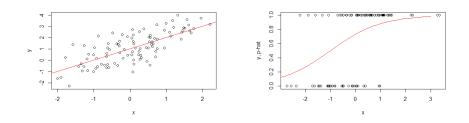
STAT 302: Logistic Regression

Sheridan Grant

University of Washington Statistics Department

slgstats@uw.edu

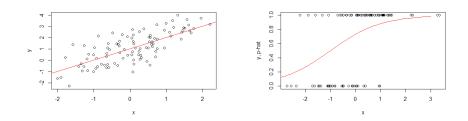
May 13, 2020



Continuous response

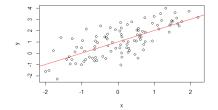
Logistic Regression

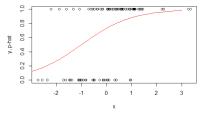
Binary response



- Continuous response
- Ŷ_i is the predicted outcome for response variable Y

- Binary response
- ▶ p̂_i = P̂(Y_i = 1) is estimated probability response Y = 1





• \hat{Y}_i is a linear function of parameters β

Logistic Regression

 logit(p̂_i) is a linear function of parameters β

- Ŷ_i is a linear function of parameters β
- Estimate model parameters/coefficients by minimizing residuals (you did this yourself on HW 4 using optim)

- logit(p̂_i) is a linear function of parameters β
- Estimate model parameters/coefficients by minimizing deviance (you don't know this, but R will do it for you!)

- Ŷ_i is a linear function of parameters β
- Estimate model parameters/coefficients by minimizing residuals (you did this yourself on HW 4 using optim)
- Predictions are Ŷ_i, can be evaluated on test data Y_i with RMSE, MAE, etc.

- logit(p̂_i) is a linear function of parameters β
- Estimate model parameters/coefficients by minimizing deviance (you don't know this, but R will do it for you!)
- Predictions Ŷ_i are a function of p̂_i, can be evaluated on test data Y_i

- ▶ If Y continuous on \mathbb{R} , then $Y = \beta_0 + \beta X$ makes sense. But $P(Y = 1) \in [0, 1]!$
- ▶ Trick: transform $p_i = P(Y_i = 1)$ so that we can use a linear model

- ▶ If Y continuous on \mathbb{R} , then $Y = \beta_0 + \beta X$ makes sense. But $P(Y = 1) \in [0, 1]!$
- ▶ Trick: transform $p_i = P(Y_i = 1)$ so that we can use a linear model
- **1**. $p \in [0, 1]$

- ▶ If Y continuous on \mathbb{R} , then $Y = \beta_0 + \beta X$ makes sense. But $P(Y = 1) \in [0, 1]!$
- ▶ Trick: transform $p_i = P(Y_i = 1)$ so that we can use a linear model
- 1. $p \in [0, 1]$
- 2. $\frac{p}{1-p} \in [0,\infty)$

- ▶ If Y continuous on \mathbb{R} , then $Y = \beta_0 + \beta X$ makes sense. But $P(Y = 1) \in [0, 1]!$
- ▶ Trick: transform $p_i = P(Y_i = 1)$ so that we can use a linear model
- 1. $p \in [0, 1]$
- 2. $\frac{p}{1-p} \in [0,\infty)$
- 3. $\operatorname{logit}(p) \equiv \log\left(\frac{p}{1-p}\right) \in \mathbb{R}$

- ▶ If Y continuous on \mathbb{R} , then $Y = \beta_0 + \beta X$ makes sense. But $P(Y = 1) \in [0, 1]!$
- First: transform $p_i = P(Y_i = 1)$ so that we can use a linear model

1.
$$p \in [0, 1]$$

- 2. $\frac{p}{1-p} \in [0,\infty)$
- 3. $\operatorname{logit}(p) \equiv \log\left(\frac{p}{1-p}\right) \in \mathbb{R}$
- 4. $\operatorname{logit}(p_i) = \beta_0 + \beta X_i + \epsilon_i, \operatorname{logit}(\hat{p}_i) = \hat{\beta}_0 + \hat{\beta} X_i$
- 5. logit⁻¹ \equiv expit (log⁻¹ = exp, right?) so $\hat{p}_i = \text{expit}(\hat{\beta}_0 + \hat{\beta}X_i)$

 Predictive power separate from model fit

Logistic Regression

 Predictive power separate from model fit

Linear Regression

- Predictive power separate from model fit
- Predictive metrics can be similar to fit metrics
 (*RMSE* = √(1/n)∑_i(Y_i Ŷ_i)²),
 RSE = √(1/df)∑_i(Y_i Ŷ_i)²)
 …or different

$$(MAE = \frac{1}{n}\sum_{i}|Y_i - \hat{Y}_i|)$$

Logistic Regression

 Predictive power separate from model fit

Linear Regression

- Predictive power separate from model fit
- Predictive metrics can be similar to fit metrics (*RMSE* = √(1/n) ∑_i(Y_i Ŷ_i)²), *RSE* = √(1/df) ∑_i(Y_i Ŷ_i)²)
 ...or different (*MAE* = (1/n) ∑_i |Y_i Ŷ_i|)

- Predictive power separate from model fit
- ▶ Need to get \hat{Y}_i from \hat{p}_i

Linear Regression

- Predictive power separate from model fit
- Predictive metrics can be similar to fit metrics (*RMSE* = √(1/n) ∑_i(Y_i Ŷ_i)²), *RSE* = √(1/df) ∑_i(Y_i Ŷ_i)²)
 ...or different (*MAE* = (1/n) ∑_i |Y_i Ŷ_i|)

- Predictive power separate from model fit
- Need to get \hat{Y}_i from \hat{p}_i
- $\hat{Y}_i = \mathbf{1}[\hat{p}_i > 0.5]$ (**1** is 1 if condition is met, 0 otherwise)

Linear Regression

- Predictive power separate from model fit
- Predictive metrics can be similar to fit metrics (*RMSE* = √(1/n) ∑_i(Y_i Ŷ_i)²), *RSE* = √(1/df) ∑_i(Y_i Ŷ_i)²)
 ...or different (*MAE* = (1/n) ∑_i |Y_i Ŷ_i|)

- Predictive power separate from model fit
- Need to get \hat{Y}_i from \hat{p}_i
- $\hat{Y}_i = \mathbf{1}[\hat{\rho}_i > 0.5]$ (**1** is 1 if condition is met, 0 otherwise)
- $\hat{Y}_i = \mathbf{1}[\hat{p}_i < 0.1]$ is dumb. But is $\hat{Y}_i = \mathbf{1}[\hat{p}_i > 0.8]$?

Linear Regression

- Predictive power separate from model fit
- Predictive metrics can be similar to fit metrics (*RMSE* = √(1/n) ∑_i(Y_i Ŷ_i)²), *RSE* = √(1/df) ∑_i(Y_i Ŷ_i)²)
 ...or different (*MAE* = (1/n) ∑_i |Y_i Ŷ_i|)

- Predictive power separate from model fit
- ▶ Need to get \hat{Y}_i from \hat{p}_i
- $\hat{Y}_i = \mathbf{1}[\hat{p}_i > 0.5]$ (**1** is 1 if condition is met, 0 otherwise)
- $\hat{Y}_i = \mathbf{1}[\hat{p}_i < 0.1]$ is dumb. But is $\hat{Y}_i = \mathbf{1}[\hat{p}_i > 0.8]$?
- Find out with prediction metrics $(ACC = \frac{1}{n} \sum_{i} \mathbf{1} [\hat{Y}_i = Y_i])$