STAT 302: Logistic Regression

Sheridan Grant

University of Washington Statistics Department

slgstats@uw.edu

May 11, 2020

Review: Prediction vs. Model Fit

Model Fit

- Compare predictions to truth
- on data used to train model

BAD measures of fit (no *df* adjustment):

•
$$SSE \equiv \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

- Root-Mean Squared Error $RMSE \equiv \sqrt{SSE/n}$
- Bad because nonsense variables can artificially decrease

GOOD measure of fit (*df* adjustment):

- df = n #Parameters
- Residual Standard Error $RSE \equiv \sqrt{SSE/df}$

```
    Good because nonsense can't improve
fit
```

Review: Prediction vs. Model Fit

Model Fit

- Compare predictions to truth
- on data used to train model

BAD measures of fit (no *df* adjustment):

•
$$SSE \equiv \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

- Root-Mean Squared Error $RMSE \equiv \sqrt{SSE/n}$
- Bad because nonsense variables can artificially decrease

GOOD measure of fit (*df* adjustment):

- df = n #Parameters
- Residual Standard Error $RSE \equiv \sqrt{SSE/df}$
- Good because nonsense can't improve fit

Predictive Power

- Compare predictions to truth
- NOT on data used to train model

Measures of predictive power

 Root-Mean Squared Error

 $RMSE \equiv \sqrt{SSE/n}$

- Mean Absolute Error $MAE \equiv \frac{1}{n} \sum_{i=1}^{n} |Y_i - \hat{Y}_i|$
- Many others

Linear Regression

- Continuous response
- $\triangleright \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}X_i$

Linear vs. Logistic Regression

Linear Regression

- Continuous response
 ând
- $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}X_i$

Logistic Regression

Binary response
 P̂(Y_i = 1) = f(β̂₀ + β̂X_i)

- Generalized linear model
- Must transform $p_i = P(Y_i = 1)$ so that a linear model makes sense
- ▶ Trick is to find 1-1 transformation $f : p \in [0,1] \rightarrow f(p) \in \mathbb{R}$

- Generalized linear model
- Must transform $p_i = P(Y_i = 1)$ so that a linear model makes sense
- ▶ Trick is to find 1-1 transformation $f : p \in [0,1] \rightarrow f(p) \in \mathbb{R}$
- **1**. $p \in [0, 1]$

- Generalized linear model
- Must transform $p_i = P(Y_i = 1)$ so that a linear model makes sense
- ▶ Trick is to find 1-1 transformation $f : p \in [0,1] \rightarrow f(p) \in \mathbb{R}$
- **1**. $p \in [0, 1]$
- 2. $\frac{p}{1-p} \in [0,\infty)$

• Generalized linear model

- Must transform $p_i = P(Y_i = 1)$ so that a linear model makes sense
- ▶ Trick is to find 1-1 transformation $f : p \in [0,1] \rightarrow f(p) \in \mathbb{R}$
- 1. $p \in [0, 1]$
- 2. $\frac{p}{1-p} \in [0,\infty)$
- 3. $\operatorname{logit}(p) \equiv \log\left(\frac{p}{1-p}\right) \in \mathbb{R}$

• Generalized linear model

- Must transform $p_i = P(Y_i = 1)$ so that a linear model makes sense
- ▶ Trick is to find 1-1 transformation $f : p \in [0, 1] \rightarrow f(p) \in \mathbb{R}$

1.
$$p \in [0, 1]$$

2. $\frac{p}{1-p} \in [0,\infty)$

3.
$$\operatorname{logit}(p) \equiv \log\left(\frac{p}{1-p}\right) \in \mathbb{R}$$

- 4. $p_i = \operatorname{expit}(\beta_0 + \beta X_i + \epsilon_i)$
- 5. $\hat{p}_i = \operatorname{expit}(\hat{\beta}_0 + \hat{\beta}X_i) (\operatorname{expit}(x) = \exp(x)/[\exp(x) + 1])$

Finally, get \hat{Y}_i from \hat{p}_i . For example, $\hat{Y}_i = \mathbf{1}[\hat{p}_i > 0.5]$. Other suggestions?