STAT 302: Logistic Regression

Sheridan Grant

University of Washington Statistics Department
slgstats@uw.edu

May 11, 2020

Review: Prediction vs. Model Fit

Model Fit

- Compare predictions to truth
- on data used to train model

BAD measures of fit (no df adjustment):

- $S S E \equiv \sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}$
- Root-Mean Squared Error $R M S E \equiv \sqrt{S S E / n}$
- Bad because nonsense variables can artificially decrease
GOOD measure of fit ($d f$ adjustment):
- $d f=n-$ \#Parameters
- Residual Standard Error $R S E \equiv \sqrt{S S E / d f}$
- Good because nonsense can't improve fit

Review: Prediction vs. Model Fit

Model Fit

- Compare predictions to truth
- on data used to train model

BAD measures of fit (no df adjustment):

- $S S E \equiv \sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}$
- Root-Mean Squared Error $R M S E \equiv \sqrt{S S E / n}$
- Bad because nonsense variables can artificially decrease
GOOD measure of fit (df adjustment):
- $d f=n-$ \#Parameters
- Residual Standard Error $R S E \equiv \sqrt{S S E / d f}$
- Good because nonsense can't improve fit

Linear vs. Logistic Regression

Linear Regression

- Continuous response
- $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta} X_{i}$

Linear vs. Logistic Regression

Linear Regression

- Continuous response
- $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta} X_{i}$

Logistic Regression

- Binary response
- $\hat{\mathrm{P}}\left(Y_{i}=1\right)=f\left(\hat{\beta_{0}}+\hat{\beta} X_{i}\right)$

More on Logistic Regression

- Generalized linear model
- Must transform $p_{i}=\mathrm{P}\left(Y_{i}=1\right)$ so that a linear model makes sense
- Trick is to find 1-1 transformation $f: p \in[0,1] \rightarrow f(p) \in \mathbb{R}$

More on Logistic Regression

- Generalized linear model
- Must transform $p_{i}=\mathrm{P}\left(Y_{i}=1\right)$ so that a linear model makes sense
- Trick is to find 1-1 transformation $f: p \in[0,1] \rightarrow f(p) \in \mathbb{R}$

1. $p \in[0,1]$

More on Logistic Regression

- Generalized linear model
- Must transform $p_{i}=\mathrm{P}\left(Y_{i}=1\right)$ so that a linear model makes sense
- Trick is to find 1-1 transformation $f: p \in[0,1] \rightarrow f(p) \in \mathbb{R}$

1. $p \in[0,1]$
2. $\frac{p}{1-p} \in[0, \infty)$

More on Logistic Regression

- Generalized linear model
- Must transform $p_{i}=\mathrm{P}\left(Y_{i}=1\right)$ so that a linear model makes sense
- Trick is to find 1-1 transformation $f: p \in[0,1] \rightarrow f(p) \in \mathbb{R}$

1. $p \in[0,1]$
2. $\frac{p}{1-p} \in[0, \infty)$
3. $\operatorname{logit}(p) \equiv \log \left(\frac{p}{1-p}\right) \in \mathbb{R}$

More on Logistic Regression

- Generalized linear model
- Must transform $p_{i}=\mathrm{P}\left(Y_{i}=1\right)$ so that a linear model makes sense
- Trick is to find 1-1 transformation $f: p \in[0,1] \rightarrow f(p) \in \mathbb{R}$

1. $p \in[0,1]$
2. $\frac{p}{1-p} \in[0, \infty)$
3. $\operatorname{logit}(p) \equiv \log \left(\frac{p}{1-p}\right) \in \mathbb{R}$
4. $p_{i}=\operatorname{expit}\left(\beta_{0}+\beta X_{i}+\epsilon_{i}\right)$
5. $\hat{p}_{i}=\operatorname{expit}\left(\hat{\beta}_{0}+\hat{\beta} X_{i}\right)(\operatorname{expit}(x)=\exp (x) /[\exp (x)+1])$

Finally, get \hat{Y}_{i} from \hat{p}_{i}. For example, $\hat{Y}_{i}=\mathbf{1}\left[\hat{p}_{i}>0.5\right]$. Other suggestions?

