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Review: Prediction vs. Model Fit

Model Fit

I Compare predictions to truth

I on data used to train model

BAD measures of fit (no df adjustment):

I SSE ≡
∑n

i=1(Yi − Ŷi )
2

I Root-Mean Squared Error
RMSE ≡

√
SSE/n

I Bad because nonsense variables can
artificially decrease

GOOD measure of fit (df adjustment):

I df = n −#Parameters

I Residual Standard Error
RSE ≡

√
SSE/df

I Good because nonsense can’t improve
fit

Predictive Power

I Compare predictions
to truth

I NOT on data used
to train model

Measures of predictive
power

I Root-Mean Squared
Error
RMSE ≡

√
SSE/n

I Mean Absolute Error
MAE ≡
1
n

∑n
i=1 |Yi − Ŷi |

I Many others
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Linear vs. Logistic Regression

Linear Regression

I Continuous response

I Ŷi = β̂0 + β̂Xi

Logistic Regression

I Binary response

I P̂(Yi = 1) = f (β̂0 + β̂Xi )
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More on Logistic Regression

I Generalized linear model

I Must transform pi = P(Yi = 1) so that a linear model makes sense

I Trick is to find 1-1 transformation f : p ∈ [0, 1]→ f (p) ∈ R

1. p ∈ [0, 1]

2. p
1−p ∈ [0,∞)

3. logit(p) ≡ log
(

p
1−p

)
∈ R

4. pi = expit(β0 + βXi + εi )

5. p̂i = expit(β̂0 + β̂Xi ) (expit(x) = exp(x)/[exp(x) + 1])

Finally, get Ŷi from p̂i . For example, Ŷi = 1[p̂i > 0.5]. Other suggestions?
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Sheridan Grant (UW) STAT 302 May 11, 2020 4 / 4



More on Logistic Regression

I Generalized linear model

I Must transform pi = P(Yi = 1) so that a linear model makes sense

I Trick is to find 1-1 transformation f : p ∈ [0, 1]→ f (p) ∈ R

1. p ∈ [0, 1]

2. p
1−p ∈ [0,∞)

3. logit(p) ≡ log
(

p
1−p

)
∈ R

4. pi = expit(β0 + βXi + εi )

5. p̂i = expit(β̂0 + β̂Xi ) (expit(x) = exp(x)/[exp(x) + 1])
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