STAT 302: Linear Regression with Factors

Sheridan Grant

University of Washington Statistics Department
slgstats@uw.edu

May 4, 2020

Factors

In the April 29 class, we discussed what might happen if the sex variable in the SAT data had more than two possible responses. Suppose 0 == male, 1 == female, and 2 == other/no response. We make this assumption in class for pedagogical reasons, but real-life justifications for this might be:

- Breaking response 2 down further might make model coefficients impossible to estimate, if there are too few responses in each group.
- If the reasons we expect GPA to vary by sex-probably societal factors, including discrimination-affect members of the 2 response group similarly (i.e. trans discrimination), then a single coefficient for this group is reasonable.

The Problem with Factors

Suppose for the "sex" variable $S 0==$ male, 1 == female, and 2 == other/no response. The response, FYGPA, is Y and the other covariate, HSGPA, is X. We fit the model

$$
Y=\beta_{0}+\beta_{X} X+\beta_{S} S+\epsilon
$$

Then the expected difference in Y between a student with $S=0$ and a student with $S=2$, holding X fixed, is $2 \beta_{S}$-twice the expected difference between $S=1$ and $S=2$. Why should we assume this? If we switched the coding for male/female, then the modeling assumption would be different-isn't that dumb? (Yes.)

Dummy Variables and One-Hot Encoding

1. Pick a level of the factor variable to be the "baseline" (irrelevant mathematically, but helpful for interpretation).
2. If there are k levels, define binary variables S_{1}, \ldots, S_{k-1} where S_{j} is 1 if S is at the j th level, and the k th level is baseline. ($S_{1}=\mathbf{1}$ [female], $S_{2}=\mathbf{1}$ [other/no response].)
3. Model $Y=\beta_{0}+\beta_{X} X+\beta_{1} S_{1}+\beta_{2} S_{2}+\epsilon$ (for our hypothetical SAT data).
In R, just do sat\$sex <- as.factor(sat\$sex), specify the order of the levels with the levels argument.

Dummy Variables and One-Hot Encoding

$$
Y=\beta_{0}+\beta_{X} X+\beta_{1} S_{1}+\beta_{2} S_{2}+\epsilon
$$

- Expected college GPA for male student with HS GPA x : $\beta_{0}+\beta_{X} x$
- Expected college GPA for female student with HS GPA x : $\beta_{0}+\beta_{X} X+\beta_{1}$
- Expected difference between male and female students (female-male), holding HS GPA fixed: subtract the previous two bullets to get β_{1}
- Expected difference between female and other/no response students (female - other/no response)?

Dummy Variables and One-Hot Encoding

$$
Y=\beta_{0}+\beta_{X} X+\beta_{1} S_{1}+\beta_{2} S_{2}+\epsilon
$$

- Expected college GPA for male student with HS GPA x: $\beta_{0}+\beta_{\chi x}$
- Expected college GPA for female student with HS GPA x : $\beta_{0}+\beta_{X X}+\beta_{1}$
- Expected difference between male and female students (female-male), holding HS GPA fixed: subtract the previous two bullets to get β_{1}
- Expected difference between female and other/no response students (female - other/no response)? Just do (female - male) - (other/no response - male) to get $\beta_{1}-\beta_{2}$.

