STAT 302: Linear Regression

Sheridan Grant

University of Washington Statistics Department
slgstats@uw.edu

April 15, 2020

Transformations of Variables

Linear models are much more comprehensive than you might guess. Suppose you thought the X, Y relationship was quadratic, i.e.

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\epsilon_{i}
$$

Then just define a new covariate, X^{2}, by considering the squares of the X_{i} !

Transformations of Variables

Linear models are much more comprehensive than you might guess. Suppose you thought the X, Y relationship was quadratic, i.e.

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\epsilon_{i}
$$

Then just define a new covariate, X^{2}, by considering the squares of the X_{i} ! Interpretation: an increase of SAT from x_{0} to x_{1} points is associated with an expected increase in GPA of

$$
\left[\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}\right]-\left[\beta_{0}+\beta_{1} x_{0}+\beta_{2} x_{0}^{2}\right]=\beta_{1}\left[x_{1}-x_{0}\right]+\beta_{2}\left(x_{1}^{2}-x_{0}^{2}\right)
$$

Transformations of Variables

You can transform the response variable too:

$$
\log (Y)=\beta_{0}+\beta_{1} X+\epsilon
$$

Transformations of Variables

You can transform the response variable too:

$$
\log (Y)=\beta_{0}+\beta_{1} X+\epsilon
$$

This cannot be interpreted on the Y scale, however, because

$$
\begin{aligned}
Y & =\exp \left(\beta_{0}+\beta_{1} X+\epsilon\right) \\
& =\exp \left(\beta_{0}\right) \exp \left(\beta_{1}\right) X \exp (\epsilon)
\end{aligned}
$$

is not a linear model: it is not additive, but multiplicative!
Such models are common in, e.g., finance, because investments can be expected to grow exponentially in the long run, but noisily. When else?

Transformations of Variables

If we suspect that the linear relationship between X and Y differs based on a second covariate Z, we can fit an interaction term:

$$
Y=\beta_{0}+\beta_{X} X+\beta_{Z} Z+\beta_{X Z} X Z+\epsilon
$$

Transformations of Variables

If we suspect that the linear relationship between X and Y differs based on a second covariate Z, we can fit an interaction term:

$$
Y=\beta_{0}+\beta_{X} X+\beta_{Z} Z+\beta_{X Z} X Z+\epsilon
$$

If Y is College GPA, X is HS GPA, and Z is sex $(0==$ male, $1==$ female), then the linear relationship between HS and College GPA can differ by sex:

$$
\begin{aligned}
& \text { (men): } Y=\beta_{0}+\beta_{X} X+\epsilon \\
& \text { (women): } Y=\left(\beta_{0}+\beta_{Z}\right)+\left(\beta_{X}+\beta_{X Z}\right) X+\epsilon
\end{aligned}
$$

Inference

How certain are we about \hat{Y}_{i} for any given i ? How certain are we that a change of a unit in X leads to a change of $\hat{\beta}$ in Y on average? There are 2 facts we need in the univariate case:

1. Regression coefficients obey a CLT, just like the sample mean (regression with just β_{0} and no covariates is computing the sample mean). There are assumptions...
2. $\operatorname{sd}(\hat{\beta} x)=x \operatorname{sd}(\hat{\beta})$

So if the S.E. estimate for $\hat{\beta}$ is $\hat{\sigma}$, then

1. a 95% confidence interval for $\hat{\beta}$ is $[\hat{\beta}-1.96 \hat{\sigma}, \hat{\beta}+1.96 \hat{\sigma}]$
2. a 95% confidence interval for the expected change in Y associated with a change in X of a units is [$a \hat{\beta}-1.96 a \hat{\sigma}, a \hat{\beta}+1.96 a \hat{\sigma}$]

Multivariate inference

To get inference for \hat{Y}_{i} or complex quantities in multivariate models, we need one more concept:

Definition

Variance-covariance matrix Let $\hat{\beta}$ be a random vector (a vector of random variables). Then

$$
\operatorname{Var}(\hat{\beta})=\hat{\Sigma}=\left[\begin{array}{cccc}
\hat{\operatorname{Var}\left(\hat{\beta}_{0}\right)} & \operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right) & \cdots & \operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{d}\right) \\
\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{0}\right) & \operatorname{Var}\left(\hat{\beta}_{1}\right) & \cdots & \vdots \\
\vdots & & \ddots & \\
\operatorname{Cov}\left(\hat{\beta}_{d}, \hat{\beta}_{0}\right) & \cdots & & \operatorname{Var}\left(\hat{\beta}_{d}\right)
\end{array}\right]
$$

All you need to know is: if $a \in \mathbb{R}^{d+1}$, then $\hat{\operatorname{Var}}\left(a^{T} \hat{\beta}\right)=a^{T} \hat{\Sigma} a$. And if lmod is a linear model object, then vcov(lmod) gives you $\hat{\Sigma}$.

