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Transformations of Variables

Linear models are much more comprehensive than you might guess.
Suppose you thought the X ,Y relationship was quadratic, i.e.

Yi = β0 + β1Xi + β2X
2
i + εi

Then just define a new covariate, X 2, by considering the squares of the Xi !

Interpretation: an increase of SAT from x0 to x1 points is associated with
an expected increase in GPA of

[β0 + β1x1 + β2x
2
1 ]− [β0 + β1x0 + β2x

2
0 ] = β1[x1 − x0] + β2(x21 − x20 )
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Transformations of Variables

You can transform the response variable too:

log(Y ) = β0 + β1X + ε

This cannot be interpreted on the Y scale, however, because

Y = exp(β0 + β1X + ε)

= exp(β0) exp(β1)X exp(ε)

is not a linear model: it is not additive, but multiplicative!
Such models are common in, e.g., finance, because investments can be
expected to grow exponentially in the long run, but noisily. When else?
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Transformations of Variables

If we suspect that the linear relationship between X and Y differs based
on a second covariate Z , we can fit an interaction term:

Y = β0 + βXX + βZZ + βXZXZ + ε

If Y is College GPA, X is HS GPA, and Z is sex (0 == male, 1 ==
female), then the linear relationship between HS and College GPA can
differ by sex:

(men): Y = β0 + βXX + ε

(women): Y = (β0 + βZ ) + (βX + βXZ )X + ε
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Inference

How certain are we about Ŷi for any given i? How certain are we that a
change of a unit in X leads to a change of β̂ in Y on average? There are
2 facts we need in the univariate case:

1. Regression coefficients obey a CLT, just like the sample mean
(regression with just β0 and no covariates is computing the sample
mean). There are assumptions...

2. sd(β̂x) = xsd(β̂)

So if the S.E. estimate for β̂ is σ̂, then

1. a 95% confidence interval for β̂ is [β̂ − 1.96σ̂, β̂ + 1.96σ̂]

2. a 95% confidence interval for the expected change in Y associated
with a change in X of a units is [aβ̂ − 1.96aσ̂, aβ̂ + 1.96aσ̂]
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Multivariate inference

To get inference for Ŷi or complex quantities in multivariate models, we
need one more concept:

Definition

Variance-covariance matrix Let β̂ be a random vector (a vector of random
variables). Then

Var(β̂) = Σ̂ =


V̂ar(β̂0) Cov(β̂0, β̂1) · · · Cov(β̂0, β̂d)

Cov(β̂1, β̂0) Var(β̂1) · · ·
...

...
. . .

Cov(β̂d , β̂0) · · · Var(β̂d)


All you need to know is: if a ∈ Rd+1, then V̂ar(aT β̂) = aT Σ̂a. And if
lmod is a linear model object, then vcov(lmod) gives you Σ̂.
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