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Causal Inference Crash Course
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Causal Diagrams & Terminology

A Y

M U

Figure: Mediation with an
unobserved confounder

I Arrows represent direct
causal effects, but are
inherently abstracted from
real-world data-generating
process

I A is the “treatment” (in
fairness, “sensitive
attribute”)

I Y is the outcome

I M mediates the effect of A
on Y

I U is an unobserved
confounder

Sheridan Grant (UW) Causal Fairness March 18, 2021 3 / 19



Causal Diagrams & Terminology

A Y

M U

Figure: Mediation with an
unobserved confounder

Y (a): the outcome had A been
intervened upon to take value a.
A may have taken on value a
naturally, anyway. Let a′ denote
the “control” level, a the
“treatment” (or level of interest).
E.g. when assessing racial
discrimination, often a′ represents
white people and a represents
Black people.
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Causal Diagrams & Terminology

A Y

M U

Figure: Mediation with an
unobserved confounder

I Average treatment effect
(ATE): E[Y (a)− Y (a′)].

I Average treatment effect on
the treated (ATT):
E[Y (a)− Y (a′)|A = a].

I If A is randomized, then
ATE = ATT.

Sheridan Grant (UW) Causal Fairness March 18, 2021 3 / 19



Types of causal effects

A M

Y

Figure: Mediation with no
confounders

Classical effect decomposition:

I Direct effect:
E[Y (a,M(a′))− Y (a′)]

I Indirect (mediation) effect:
E[Y (a)− Y (a,M(a′))]

I Total effect (ATE or ATT):
sum of direct and indirect
effects
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Types of causal effects

A M

Y

Figure: Mediation with no
confounders

Classical effect decomposition
(linear model):

I Fit Y = β0 + βAA+ βM + ε;
βA is direct effect

I Fit Y = β′0 + β′AA + ε; β′A is
total effect

I β′A − βA is indirect effect
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Types of causal effects

A M

Y

Figure: Mediation with no
confounders

In more complex graphs:

I All of this generalizes to
complex diagrams, multiple
mediators/paths,
confounders, etc.

I Modern causal (often
semiparametric) inference
studies this

I Nabi and Shpitser 2017
points you to many such
papers
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Motivating Causal Fairness
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When does Fairness through Unawareness fail?

I Fairness through Unawareness is a naive but initially appealing
approach: simply don’t consider race when making decisions (human
OR algorithmic).

I In fact, sometimes the only fair thing to do is to explicitly consider
race: Fairness through Awareness.

I Example: Y = accident rate; X = color of car (1 if red); A = race (1
if black).

A U

X Y
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When does Fairness through Unawareness fail?

Unfair approaches:

I Model relationship between car color and accidents, charge black
people more (because Y and A are d-connected/dependent given X )
even though race doesn’t affect accident risk

A U

X Y
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When does Fairness through Unawareness fail?

Fair(?) approaches:

I Randomly price insurance (go out of business)

I Model relationship between accidents and race, find none (because A
and Y are not d-connected/marginally independent), randomly price,
go out of business

I Model relationship between accidents vs. race AND car color, charge
red cars more, give black people fair “discount” that accounts for
association with accident-prone (but not accident-causing) trait

A U

X Y
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Counterfactual Fairness (Kusner et al. 2017)
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Computing Counterfactual Predictions

Consider an outcome Y , sensitive attribute A, covariates X (which may
contain descendants anbd/or ancestors of A), latent variables U that are
non-descendants of A, and a predictor Ŷ that is a function of X , possibly
A, and possibly U. We wish to compute the counterfactual distribution of

ŶA←a′(U)|Y = y ,X = x ,A = a
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Computing Counterfactual Predictions

Algorithm for computing

ŶA←a′(U)|Y = y ,X = x ,A = a

1. (Only if Ŷ is a function of U:) Compute P(U|Y = y ,X = x ,A = a).
The paper (Kusner et al. 2017) crucially omits Y , which is often
needed to learn this posterior distribution (we are interested in latent
variables that are informative about Y , after all).

2. Intervene by setting A = a′, and use the SEM associated with the
causal diagram to also change the values of all descendants of A in X
to X (A = a′).

3. Compute Ŷ from the new A = a′, X (A = a′), and possibly by
averaging over P(U|Y = y ,X = x ,A = a)
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Counterfactual Fairness

Definition

Ŷ is counterfactually fair if

P(ŶA←a(U)|Y = y ,X = x ,A = a) = P(ŶA←a′(U)|Y = y ,X = x ,A = a)

I A sufficient condition for counterfactual fairness is if Ŷ is not a
function of A or any of its descendants

I Proposition: sufficient condition for counterfactual fairness: 1) no
direct effect of A on Y , 2) model covariates d-separate A from Y , 3)
model is correctly specified

I Authors admit that allowing for race to affect Ŷ along some paths
(Nabi and Shpitser 2017, next section) is desirable
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Counterfactually Fair Estimation

1. Write down causal model for latent variables U that are
non-descendants of A

2. Generate synthetic latent variables from P(U|X ,A)

3. Minimize L(Y , f (U,X \ desc(A))) empirically over the observed data
and synthetic latent variables.

The learned f̂ trivially satisfies counterfactual fairness because it satisfies
the sufficient condition from previous slide.
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Pathwise Fairness (Nabi and Shpitser 2017)
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Hypothetically Fair Worlds

Causal models seek to reconstruct a hypothetical world in which the
treatment was randomly assigned. Nabi and Shpitser 2017 do this with
fairness: estimate a “fair” world that is KL-close to the observed world.

I Assume linearity, standardized variables for now

I “fair”: PSE strengths restricted to [εl , εu]

I Divide covariates into X and Z , and condition on the Z
covariates—that is, assume they come from a “fair world.”

I Estimate parameters of p∗ subject to PSE constraints.

I For future predictions: 1) use X̃i ≡ E∗[X |Zi ] in place of Xi , 2) use
p∗(Yi , X̃i ,Zi ) to make predictions

I Example: BART
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COMPAS Results

Use BART (Chipman, George, and McCulloch 2010) as outcome model,
but in MCMC reject any step yielding a PSE outside constrained range.

Model Accuracy NDE (1 = fair)
Unconstrained 67.8% 1.3

Constrained 66.4% 1.05
Race-unaware 64% 2.1

Table: Accuracies and race NDE for various BART models of COMPAS data.
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Challenges for Future Work

I In general, constraining PSEs introduces nonconvex constraints:
assuming a linear SEM, a 1-length path needs only convex
constraints, but a 2-length path (e.g. A→ M → Y ) require a
nonconvex constraint (εl < βA→M · βM→Y < εu). This is clearly a
serious problem and one of the main gaps in the paper.

I Choice of X and Z . Authors discuss “tradeoffs” but it appears to me
that the more variables in Z the better (judging from the
developments in “Fair Inference From Finite Samples,” the authors
seem to agree).

Sheridan Grant (UW) Causal Fairness March 18, 2021 14 / 19



References I

Hugh A. Chipman, Edward I. George, and
Robert E. McCulloch. “BART: Bayesian additive regression
trees”. EN. In: The Annals of Applied Statistics 4.1 (Mar.
2010), pp. 266–298. issn: 1932-6157, 1941-7330. doi:
10.1214/09-AOAS285. url:
https://projecteuclid.org/euclid.aoas/1273584455

(visited on 03/20/2019).

Moritz Hardt, Eric Price, and Nathan Srebro. “Equality of
Opportunity in Supervised Learning”. In: arXiv:1610.02413 [cs]
(Oct. 2016). arXiv: 1610.02413. url:
http://arxiv.org/abs/1610.02413 (visited on
10/16/2018).

Sheridan Grant (UW) Causal Fairness March 18, 2021 15 / 19

https://doi.org/10.1214/09-AOAS285
https://projecteuclid.org/euclid.aoas/1273584455
http://arxiv.org/abs/1610.02413


References II

Matt J Kusner et al. “Counterfactual Fairness”. In:
Advances in Neural Information Processing Systems 30. Ed. by
I. Guyon et al. Curran Associates, Inc., 2017, pp. 4066–4076.
url: http://papers.nips.cc/paper/6995-
counterfactual-fairness.pdf (visited on 10/16/2018).

Razieh Nabi and Ilya Shpitser. “Fair Inference On Outcomes”.
In: arXiv:1705.10378 [stat] (May 2017). arXiv: 1705.10378.
url: http://arxiv.org/abs/1705.10378 (visited on
08/21/2018).

Sheridan Grant (UW) Causal Fairness March 18, 2021 16 / 19

http://papers.nips.cc/paper/6995-counterfactual-fairness.pdf
http://papers.nips.cc/paper/6995-counterfactual-fairness.pdf
http://arxiv.org/abs/1705.10378


Appendix of Slides that are Partially Wrong
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When do associative fairness metrics fail?

C G

H

Figure: Prior conviction C , hiring H,
and gender G

Figure: Rates of hiring H for
different genders G and prior
conviction status C .

This distribution actually displays equality of opportunity! (Hardt, Price,
and Srebro 2016)
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Discussion Points

I Top of p. 6: “counterfactual fairness makes impossibility result
regarding calibration and equalized odds irrelevant”

I Latent variables U (“distribution of background variables [U] as given
by a... model... that is available by assumption”)—how to model
them? Tradeoff between assumptions and informativeness?
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